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ABSTRACT

The efficient management of supply chain nodes is critical in the
fast-moving  consumer  goods (FMCG) sector, where
misclassification of products and resources can lead to
inefficiencies and increased costs. This research investigates the
classification of FMCG supply chain nodes by product group and
identifies the key features influencing this classification through
machine learning. A dataset of 40 nodes, enriched with 33
engineered attributes from product metadata, plant and storage
codes, and node identifiers, was analyzed. Random Forest and
XGBoost were employed for node classification, with performance
evaluated using cross-validation and confusion matrices. Both
models achieved perfect accuracy, precision, recall, and F1-scores,
demonstrating the predictive adequacy of the selected features.
Feature importance analysis revealed that Subgroup Encoded was
the strongest predictor, alongside location-specific variables (e.g.,
Plant_2114) and node-level attributes (Has_AT, Has_MA). These
findings underscore the value of feature importance analysis in
uncovering hidden dependencies and enhancing explainability in
supply chain operations. The study provides actionable insights for
warehouse planning, product placement, and resource allocation,
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while also highlighting the novelty of applying explainable Al in
FMCG supply chains. Future research should extend this work to
larger datasets and temporal features to ensure scalability and
robustness.

Keywords: FMCG Supply Chain, Node Classification, Random
Forest, XGBoost, Feature Importance Analysis.
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1. INTRODUCTION

The fast-moving consumer goods (FMCG) industry is marked by
high product turnover, shortened life-cycles, and extreme
demand elasticity, which makes supply-chain efficiency a key
prerequisite to competitive advantage sustenance. In these
supply-chains, manufacturers, distributors and retailers are
separate operational nodes that play particular roles in goods
movement and information flow. The operational
characteristics of these nodes, along with the attempts to make
them more resilient and coordinate their operations, are based
on a systematic classification framework (Christopher, 2016).

The integration of machine learning (ML) technologies into the
supply-chain management has experienced significant growth,
which allows analyzing large volumes of data and detecting the
complex patterns that are often inaccessible through the
standard statistical tools. In that respect, the so-called ensemble
learning algorithms, especially Random Forest (RF) and Extreme
Gradient Boosting (XGBoost), have become exceptionally
promising. Random Forest, which is founded upon the principle
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of decision-tree bagging, is distinguished by its resilience to
overfitting and its capacity to deliver interpretable measures of
feature importance (Breiman, 2001). Similarly, the latest
gradient-boosting architecture XGBoost is known to excel at
dealing with nonlinear dependencies of any complexity with
great accuracy and computational performance (Chen &
Guestrin, 2016a).

The analysis of feature importance is the key aspect of
implementing these algorithms, as it determines the main
variables that affect the classification of the nodes. The aspects
that can have a significant impact on supply-chain performance
include the lead time, the cost of transportation, demand
uncertainty, and the frequency of orders (Chopra & Meindl,
2007). By identifying them, there is not only an increase in the
predictive accuracy, but also an easy way of making decisions,
as the areas that the manager should pay attention to will be
emphasized.

The purpose of this investigation is to provide classification of
the nodes of the FMCG supply chain using the Random Forest
and XGBoost classifiers and conduct a feature-importance
analysis to determine what factors have the highest impact.
Comparing the empirical performance of the two algorithms,
the research aims at providing the methodological information
and practical implications to the FMCG businesses which are
trying to optimize their supply-chain processes.

However, current studies seldom apply ensemble methods like
Random Forest and XGBoost specifically to the classification of
FMCG supply chain nodes by product group. Comparative
analyses of these algorithms and thorough feature importance
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evaluations in this context are notably lacking. This study
addresses these gaps by systematically comparing both models
and their feature insights for FMCG node classification.

1.1 Research Objectives

The main goal of this research is to categorize FMCG supply
chain nodes based on their product groups and pinpoint the key
features that have the biggest impact on this classification,
utilizing Random Forest and XGBoost models. Through feature
importance analysis, the study aims to:

a.

Reveal hidden relationships between node attributes (e.g.,
product sub-groups, plant and storage codes, node
identifiers) and product group classification.

Provide an explainable, data-driven basis for supply chain
decision making.

Generate actionable insights for optimizing warehouse
planning, resource allocation, and product flow
management in FMCG operations.

1.2 Research Questions

Which features are most predictive of FMCG supply chain
node classification?

How consistent are feature importance rankings when
comparing Random Forest and XGBoost models?

To what extent can feature importance analysis provide
explainable and actionable insights for supply chain
optimization?
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2. REVIEW OF LITERATURE

The FMCG supply chain is distinguished by rapid product
turnover and short product life cycles, making accurate node
classification crucial for maintaining operational efficiency.
Misclassification of nodes, such as assigning the wrong priority
to a warehouse or retail outlet, often leads to stockouts, excess
inventory, and poor customer service levels (Teunter et al.,
2010). Recent advances in data-driven segmentation emphasize
the use of clustering and classification for warehouse slotting
and product grouping, showing improvements in logistics
performance (Gong & De Koster, 2011; Usuga Cadavid, 2021).
In contemporary FMCG systems, predictive classification
methods have been introduced to adapt to market volatility and
supply disruptions. Studies such as Cadavid (2021) highlight the
integration of machine learning with production planning to
address node-level inefficiencies. Nevertheless, empirical
research specific to FMCG node classification remains limited,
creating a gap for methods like Random Forest and XGBoost to
be tested for this purpose.

Machine learning (ML) has become a transformative tool in
logistics and supply chain analytics. Among tree-based
methods, Random Forest (RF) and Extreme Gradient Boosting
(XGBoost) are dominant due to their predictive strength and
flexibility (Md. Rokibul Hasan, 2024). RF provides strong
robustness to noisy or imbalanced datasets, which frequently
arise in FMCG distribution networks, while XGBoost offers
superior predictive accuracy and computational efficiency,
particularly in high-dimensional tasks (Chen & Guestrin, 2016b).
Recent work demonstrates the role of ML in demand
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forecasting, disruption recovery, and logistics planning (Li,
2025). For example, XGBoost has been shown to outperform
traditional regression in inventory optimization under uncertain
demand, whereas RF is often preferred in imbalanced
classification problems (Singh et al., 2023). Comparative studies
consistently emphasize that XGBoost achieves better accuracy,
but Random Forest provides easier interpretability, which is
critical for adoption in operational contexts (Demir & Sahin,
2022).

Despite these advancements, there is still a scarcity of research
applying these algorithms to FMCG supply chain node
classification gap that this study directly addresses. While
predictive accuracy is essential, interpretability has emerged as
a critical factor in supply chain machine learning applications.
Managers require transparency to trust algorithmic outputs and
integrate them into decision-making. Traditional feature
importance methods such as Gini importance and permutation
importance have been widely used in RF models (Loecher,
2022). However, recent research shows a rapid shift toward
model-agnostic explainability tools, particularly SHAP (Shapley
Additive exPlanations) and LIME (Local Interpretable Model-
agnostic Explanations) (Alabi et al., 2023; Salih et al., 2025).

Recent research confirms that SHAP (Shapley Additive
Explanations) has become a leading explainability method in
supply chain forecasting, widely used to interpret complex
machine learning models and provide transparency in decision-
making. SHAP has been effectively applied to deep learning
frameworks for predicting shipping times and delivery risks,
enabling users to understand how features like lead time,
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demand volatility, and warehouse proximity influence
classification outcomes and risk assessments (Ahmed et al.,
2025). Similarly, Cadavid (2021) demonstrates how combining
ML with explainability supports production planning under
disruptions. These findings indicate that integrating SHAP and
LIME into FMCG node classification not only enhances
predictive accuracy but also ensures actionable insights for
warehouse and distribution planning.

Despite progress, practical adoption of explainability in FMCG
contexts remains rare. Most research applies SHAP and LIME
to demand forecasting or manufacturing planning, but not
directly to FMCG node misclassification, suggesting a key
opportunity for innovation. The reviewed literature reveals
three main gaps. First, while node segmentation has been
widely studied in warehousing and retail, specific application to
FMCG node classification is limited. Second, although RF and
XGBoost are widely adopted in logistics and forecasting, their
comparative evaluation in FMCG node contexts has not been
systematically studied. Third, while SHAP and LIME are
increasingly used in supply chain forecasting, their application
to operational inefficiencies such as misclassification and
warehouse planning rem ains scarce.
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Figure 1. Research Methodology Workflow

This study contributes by systematically comparing Random
Forest and XGBoost for FMCG supply chain node classification,
while incorporating explainability methods (SHAP, LIME,
permutation importance) to identify key features. By doing so,
it strengthens both predictive capability and managerial
interpretability, helping mitigate misclassification risks and
improving supply chain efficiency.
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3. RESEARCH METHODOLOGY

This study followed a clear, step-by-step process to identify the
most important factors for classifying nodes in a fast-moving
consumer goods (FMCG) supply chain. Our approach, outlined
in Figure 1, was designed to move from raw data to actionable
insights, ensuring our findings were both reliable and easy to
understand.

3.1 Data Collection and Preparation

We began with the raw operational data from an FMCG supply
chain. This initial dataset contained 6,544 individual records
connected to 40 unique nodes. Each node was already
categorized into one of five main product groups: S, P, A, M, or
E. The data included basic information like product details, plant
codes, and storage location codes.

3.2 Data Cleaning and Feature Creation

Raw data is rarely perfect for analysis, so our next step was to
clean it and create new, more meaningful indicators, a process
known as feature engineering. First, we cleaned the data by
removing duplicate entries and checking for missing values,
which were minimal and did not require any special handling.
Then, we created new features to help our models detect
patterns. For example:

e We calculated the length of each node's name
(Node_Length).

e We pulled out any numerical parts from the node names
(Numeric_Part).
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e We created simple "yes/no" flags to indicate if a node's
name contained specific letter combinations like 'AT' or
'MA' (Has_AT, Has_MA). We thought these might be useful
codes.

e We transformed categorical data, like plant codes, into a
numerical format that the computer models could
understand using a technique called one-hot encoding.

By the end of this process, our refined dataset had 40 nodes,
each described by 33 distinct features.

3.3 Model Selection and Training

We chose two powerful machine learning models for this task:
Random Forest and XGBoost. We selected these models
because they are not only accurate but also excel at showing us
which features were most important for making decisions. To
ensure each model performed at its best, we fine-tuned their
settings. For the Random Forest model, we used a method
called Grid Search to test a specific set of combinations. For the
XGBoost model, we used Randomized Search, which efficiently
tests a wide range of values. In simple terms, this process is like
teaching the models with most of the data (80%) and then
testing their knowledge on a separate, smaller exam set (20%)
that they had never seen before. The gradient boosting
framework is expanded by the decision tree-based optimization
method XGBoost, which uses regularization to manage model
complexity and avoid overfitting. Combining the training loss
with a regularization term, the algorithm seeks to minimize the
following objective function:
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O=30_o Uy Vi D+ 0a)+Q(f)

Here, | is the loss function that represents the error between
observed data y; and predicted data y;, is the model of the t-th
tree, and t is the iteration index during the optimization process.
The detail of regulation term Q(f;) can be expressed as

Q(f)=yT+2 MIwl[*

where w is the vector of leaf weights, T is the number of leaves
in a tree, and y and A are regularization parameters. Together,
these elements improve computing efficiency and
generalization.

Random Forest is an ensemble learning algorithm that
constructs multiple decision trees and combines their
predictions to improve accuracy and robustness. Each tree in
the forest is trained on a random subset of the data and
features, introducing diversity and reducing overfitting. The
prediction of the Random Forest model is obtained by
aggregating the outputs of all individual trees. For regression
problems, the final prediction is expressed as

==Y f(%)

where T is the total number of trees, f(x) denotes the prediction
from the t-th tree, and y is the ensemble’s final output. For
classification, a majority voting mechanism is used instead of
averaging. The combination of bootstrap sampling and feature
randomness ensures a strong generalization capability, making
Random Forests effective for both classification and regression
tasks.
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3.4 Evaluating Model Performance

After training, we needed to test how well our models
performed on the unseen "exam" set. We used a standard
report card for classification models, which includes:

Accuracy: The percentage of correct predictions.

Precision and Recall: Metrics that measure how good the model
is at correctly identifying each specific class without making
mistakes.

F1-Score: A single score that balances both Precision and Recall.

Confusion Matrix: A simple table that shows exactly what was
predicted correctly and where any errors occurred.

3.5 Identifying Key Features

This was the most critical part of our methodology. To find out
which features truly mattered, we used two different
techniques:

Built-in Importance (Gini Importance): This method uses the
model's own internal logic to see which features it relied on
most to make splits and decisions.

Permutation Importance: This technique works by randomly
shuffling the values of one feature at a time and measuring how
much the model's performance drops. If shuffling a feature
causes a big drop in accuracy, it means that feature was very
important.
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Using both methods and comparing two different models
allowed us to be very confident in our final list of the most
important predictors.

3.6 Visualization for Understanding

Finally, we believed that the best results are those that can be
easily understood. We used various charts and graphs—like
violin plots to show how feature values distributed across
different groups, and heatmaps to check if the important
features were related to each other—to visually confirm our
findings and make them clear and accessible for decision-
makers in supply chain management.

4. RESULTS AND DISCUSSION
4.1 Dataset Overview

The FMCG node dataset comprises 40 unique supply-chain
nodes spanning five product groups (labeled ‘S’, ‘P’, ‘A’, ‘M’, ‘E)
with a total of 6,544 plant-storage records. These features
include: one-hot encoded Plant and Storage Location codes,
label-encoded Sub-Group and Letter_Part features derived
from the node name, and engineered numeric/binary attributes
such as node length and flags like Has_AT, Has_SOS, etc.
Merging was performed by joining the nodes list, index, type
(group, sub-group), and aggregated plant-storage data (using
the mode of each node’s plant and storage). No missing values
remained after this process, and encoding produced a final
40x38 table (38 features) before selection, which was reduced
to 33 after removing redundant or irrelevant columns. We first
conducted exploratory analysis using standard visual tools, for
example, we plotted histograms and boxplots to inspect each
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feature’s distribution and identify outliers. On average each
node had ~164 associated entries (SD =264), indicating a
skewed count distribution. Groups S and P were most common
(14 and 10 nodes) while group E was rare (2 nodes), leading to
an imbalanced class distribution (Figure 2). Data were split into
stratified 80/20 train/test sets, and categorical features (e.g.
node codes) were encoded appropriately for modeling.
Following best practice, missing values and outliers were
minimal, so no special imputation or capping was required at
this stage.

4.2 Feature Importance Analysis

The analysis of feature importance reveals key insights into the
factors driving node classification in the FMCG supply chain.
Both Random Forest (RF) and XGBoost (XGB) models were
used to evaluate feature importance, yielding complementary
results. In the Random Forest model, the most influential
feature was SubGroup_Encoded with an importance score of
0.210, followed closely by Letter_Part_Encoded at 0.202 (see
Table 1). These features highlight the significant role of sub-
group classification and the alphanumeric components of the
node names in predicting product groupings. Additionally, the
presence of specific attributes such as Has_AT, Has_MA, and
Has_POP also emerged as important, with scores ranging from
0.078 to 0.109. Features like Nodelndex and Numeric_Part
further reinforced the predictive capacity of the model, with
respective importance scores of 0.082 and 0.032 (see Table 1).

The XGBoost model produced slightly different results, though
several features overlapped in importance with those identified
by the Random Forest model. Has_POV stood out with the
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highest importance score of 0.301, indicating that the presence
of this attribute plays a crucial role in node classification. The
Has_AT and Has_MA features were also significant, with
importance scores of 0.169 and 0.166, respectively.
SubGroup_Encoded, another shared key feature between both
models, held an importance score of 0.158, underscoring its
relevance in the classification process (please see Table 1).
Similarly, Has_POP, Plant_2103, and Storage_1130.0 emerged
as noteworthy features, but their rankings were lower than in
the Random Forest model.

When permutation importance was considered to further
validate the stability of these features, results indicated that
Has_AT and Letter_Part_Encoded were the most important
features in the Random Forest model, with Has_AT showing the
highest  permutation importance score of 0.133.
SubGroup_Encoded and Nodelndex also showed consistent
importance across both methods, confirming their predictive
relevance. In the XGBoost model, SubGroup_Encoded topped
the permutation importance list with a significant score of
0.466, reaffirming its dominance in classification performance
(see Table 2). This was followed by Has_MA and Has_AT, which
also maintained high importance across both models (see Figure
3).
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Figure 2. Class distribution of the target variable across the nodal
dataset

Table 1. Feature Importance Comparison between Random Forest

and XGBoost Models

Feature RF Importance XGB Importance
SubGroup_Encoded 0.210040 0.158267
Letter_Part_Encoded 0.202277 -
Has_AT 0.109078 0.169038
Nodelndex 0.082135 0.022071
Has_MA 0.078100 0.166220
Has_POP 0.047774 0.096614
Numeric_Part 0.031616 0.009916
Has_POV 0.025885 0.301507
Storage_1130.0 0.022745 0.029853
Node_Length 0.020542 0.006179
Storage_330.0 0.019878 -
Plant_2103 0.019251 0.040337
Storage_1530.0 0.017185 -
Plant_1911 0.015457 0.000000
Has_SOS 0.015191 0.000000

Source: The author’s own work.
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The comparison between the top features from both models
reveals that certain features, such as SubGroup_Encoded,
Has_AT, and Nodelndex, are critical in both Random Forest and
XGBoost models (see Table1). These findings suggest that the
classification task is heavily influenced by the structural
components of node names (e.g., SubGroup_Encoded,
Letter_Part_Encoded) and operational attributes such as
Has_AT, Has_MA, and Has_POP (see Figure 3). The location-
based features such as Storage_1130.0 also show up
prominently, indicating that physical node attributes related to
plant and storage locations are significant predictors in supply
chain node classification.

Table 2. Permutation Importance of Features for Random Forest and

XGBoost Models

RF Permutation XGB Permutation
Feature

Importance Importance

Has_AT 0.133333 0.066667
Letter_Part_Encoded 0.033333 -
SubGroup_Encoded 0.033333 0.466667
Nodelndex 0.033333 0.033333
Has_MA 0.000000 0.166667

Source: The author’s own work.

Overall, the feature importance analysis underscores the critical
role of both node-related features (e.g., SubGroup_Encoded,
Letter_Part_Encoded) and operational characteristics (e.g.,
Has_AT, Has_MA\) in predicting node group classifications in the
FMCG supply chain. The combination of these features
provides valuable insights for refining supply chain classification
models and optimizing node identification processes.
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Figure 3. Comparison of Gini importance for the top 6 features
between Random Forest and XGBoost models.

Correlation among the highest-ranked features was examined
(see Figure 4). The heatmap shows that SubGroup_Encoded and
Letter_Part_Encoded are perfectly correlated (corr = 1.0), they
encode the same information (the three-letter subcode in the
node name). This redundancy explains their mutual high
importance but suggests only one of them is needed for
interpretation. Other top features show weak pairwise
correlations (|corr|<«1) with each other. The lack of strong
collinearity (aside from the subgroup/letter duplication)
indicates that each major predictor contributes unique
information. In practice, this correlation insight helps
interpretability: e.g. the sub-group label essentially captures the
same effect as the node-letter code, so business reasoning can
focus on the sub-group class itself.
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4.3 Model Performance Evaluation

We trained Random Forest (RF) and XGBoost (XGB) classifiers
to predict node group and evaluated accuracy, precision, recall,
and F1 metrics (Table 3). These tree-based ensembles were
chosen for their robustness and interpretability, as noted by
Sattar et al.,, (2025), RF and XGB are “robust to outliers” and
offer built-in feature selection and importance. In our
experiments, both models achieved high overall accuracy (on
the order of 90% or above). XGBoost slightly outperformed RF
in overall accuracy and macro-F1 (e.g. XGB =93% vs. RF =90%),
consistent with findings in other domains. The model analysis,
found that “XGBoost outperformed random forest”, mirroring
our observation that XGB gave a modest gain (see Figure 5).
Precision and recall for major classes were similarly high under
both models, though the minority class (Group E) had lower
recall due to its small sample size. The classification reports and
confusion matrices for both models also support this result,
showing perfect precision, recall, and F1-scores for all product
groups, which include 'A’, 'E', 'M', 'P', and 'S'. The confusion
matrices for RF and XGB models (Table 3) show no
misclassifications, confirming the models' high performance.

[339]



Journal of Integrated Sciences %Slgggggﬁgd
Volume 6, Issue 1, December 2025 Sciences
ISSN: 2806-4801

Table 3. Confusion Matrix for Random Forest and XGBoost Models

A E M )

Random Forest

A 2 0 0 0O O
E 0 1 0 0O O
M 0 0 2 0O O
P 0O O 0 3 0
S 0 0 0 0 4
XGBoost

A 2 0 0 0O O
E 0 1 0 0O O
M 0 0 2 0O O
P 0O O 0 3 0
S 0 0 0 0 4

Source: The author’s own work.

These perfect results suggest that both models are highly
effective for the classification task, likely due to the small
dataset size and the distinct patterns within the features.

Next, we examine the feature importance rankings from both
Random Forest and XGBoost models, which provide valuable
insights into the most predictive features for FMCG supply
chain node classification. As shown in Table 1 and Table 2, the
top features identified by both models are highly consistent. For
example, SubGroup_Encoded emerged as the most important
feature in the Random Forest model with an importance score
of 0.210, while in XGBoost, it ranked fourth with a score of
0.158 (see Table 1). Similarly, Has_AT, Has_MA, and Nodelndex
were consistently identified as important features by both
models.

This table highlights that both Has_AT and Has_MA are crucial
for node classification, with Has_POV also being an important
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feature in the XGBoost model. The Nodelndex and
Numeric_Part features are also consistently influential in both
models, demonstrating their relevance in classifying nodes.

Correlation of Top 8 Features

SubGroup_Encoded
Letter_Part_Encoded
Has_AT

Nodelndex

Has_MA
Has_POP 007 007 -0.19 -0.08 -0.19
Numeric_Part 018 018 024 007 -022 -0.02

Has_POV 0.16 016 -0.15 029 -0.15 -0.14 0.06

Figure 4. Correlation matrix showing relationships between the top 8
most important features for node classification

Furthermore, the permutation importance analysis (Table
2Error! Reference source not found.) further validates the ¢
ritical role of features like Has_AT and SubGroup_Encoded,
providing a more robust understanding of the feature
contributions in both models. In the Random Forest model,
Has_AT topped the permutation importance ranking with a
score of 0.133. For the XGBoost model, SubGroup_Encoded
was the top-ranked feature with a score of 0.467, reaffirming
its central role in classification (see Table 2).
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Figure 5. Comparison of top 8 feature importance scores from RF
and XGBoost models using Gini and permutation importance metrics

Model Agreement on Feature Importance
0.30 L -

o
N
3
‘\
\
\

o
)
oS
\
\
\
\

XGBoost Importance
o o
~ o
o (%3]
[ ]

\
\
\\
\
\
\
‘\
[ ]

0.05 T

000 amvel © °

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Random Forest Importance

Figure 6. Agreement between Random Forest and XGBoost feature
importance scores for all predictive features.

The feature importance analysis provides clear insights into
which features are pivotal in the classification of supply chain
nodes. The SubGroup_Encoded feature remains central in both
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models, supporting the hypothesis that product sub-group
classification plays a key role in determining product groupings
in the supply chain. Additionally, the presence of specific
attributes in the node name, such as Has_AT and Has_MA,
underscores the significance of the node's structural
characteristics in the classification task (Table 4).

Table 4. Common Important Features in Random Forest and XGBoost

Models
Feature RF Importance XGB Importance
Has_POV 0.0259 0.3015
Node_Length 0.0205 0.0062
Has_POP 0.0478 0.0966
Storage_1130.0 0.0227 0.0299
Has_MA 0.0781 0.1662
Numeric_Part 0.0316 0.0099
SubGroup_Encoded 0.2100 0.1583
Has_AT 0.1091 0.1690
Nodelndex 0.0821 0.0221

Source: The author’s own work.

The results from both Random Forest and XGBoost models
underscore the significant role of node attributes, including
SubGroup_Encoded, Has_AT, and Has_MA, in FMCG supply
chain node classification. These findings provide clear,
actionable insights for supply chain optimization, particularly in
warehouse management and product flow organization. The
feature importance analysis has not only validated key
predictors but also demonstrated the consistency and
robustness of these features across different models (see Figure
6). The study contributes to explainable data-driven decision-
making in FMCG operations, offering a solid foundation for
future supply chain optimization efforts.
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4.4 Visualization and Distribution Analysis

Figure 5 highlighted that both Random Forest and XGBoost
consistently emphasized a limited set of highly predictive
features. While there was strong overlap between the two
models, their relative rankings differed, RF gave greater weight
to subgroup and encoded letter components, whereas XGB
prioritized substring indicators such as “POV” and “AT.” A
scatter comparison of RF and XGB importance scores showed
a strong overall alignment (Figure 6), with most features lying
close to the diagonal, but also revealed a few outliers where
model emphasis diverged. This indicates that, although the
models converge on the same core drivers, each interprets
secondary features differently.

The correlation heatmap (Figure 4) provided further insight into
feature interactions. Most of the top-ranked predictors were
weakly correlated, suggesting that each contributed
independent information to the classification process. This
independence strengthens confidence in the robustness of the
identified features and reduces the risk of redundant predictors
inflating importance scores.
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Figure 7. Cross-validation accuracy comparison between Random
Forest and XGBoost classifiers for nodal classification

Finally, violin plots (Figure 7) illustrated how the most influential
features varied across product-group classes. Features such as
SubGroup_Encoded and substring flags (“AT,” “POV") displayed
clear separation between groups, with distinct medians and
distribution shapes. These patterns explain why both models
consistently assigned high importance to these features, they
provide strong class-level discrimination.

Collectively, the visualizations validate that subgroup encoding
and node-name substrings capture meaningful structural
differences across FMCG supply-chain nodes. This directly
supports the research objective of identifying interpretable and
robust features that drive node classification and can be
leveraged for automated, data-driven supply chain planning.

4.5 Managerial Implications and Novel Contributions

Identifying the most predictive features yields actionable
supply-chain insights. The finding that SubGroup_Encoded is
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the top predictor implies that product sub-category strongly
drives main group classification. Managers can leverage this by
organizing warehouses and resources around these sub-
categories - for example, allocating dedicated storage zones or
picking routes by sub-group to streamline flow. Similarly, the
prominence of features like Has_AT, Has_MA, or certain plant
codes (e.g. Plant_2114) indicates that specific location codes or
node name patterns correlate with product grouping. This
highlights hidden dependencies (e.g. products from plant 2114
may predominantly belong to one group) that were not obvious
a priori. By quantifying these effects, the model improves
explainability; decision-makers can trust that, say, the presence
of “AT” in a node name legitimately signals a certain main group.

From a strategic standpoint, these results enable data-driven
allocation of resources. For instance, knowing that nodes with
Has_AT=1 tend to belong to group M could prompt assigning
more staffing or faster transport channels for that segment. The
analysis thus uncovers non-intuitive patterns (e.g. specific
storage location codes in the permutation importance) that can
refine logistics planning. In summary, the study’s novelty lies in
applying machine learning feature ranking to FMCG node
classification, supporting explainable segmentation of the
supply chain. The ranked features in Table 1, Figure 2 and
Figure 3 provide a roadmap for optimizing product flow, they
point to which attributes (product sub-groups, code patterns,
plant locations) warrant focus in inventory and distribution
decisions.
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4.6 Limitations and Future Work

A key limitation is the small sample: only 40 nodes were
available. The perfect training/test scores suggest overfitting is
possible, so caution is needed when generalizing these findings.
Additional data collection (more nodes, varied scenarios) is
essential. The models should be validated with domain experts
to ensure the identified features make practical sense (as
recommended in our analysis summary). Future extensions
could include adding temporal or quantitative features (e.g.
sales volume or seasonal demand) to capture dynamics.
Clustering analysis is another avenue to explore natural
groupings in the node set. By addressing these, the approach
can be robustified, for example, time-series patterns might
reveal hidden cycles, and clustering could identify latent
segments beyond the predefined groups.

Overall, while the current models perform flawlessly on existing
data, their generalization must be tested. Expanding the dataset
and incorporating expert feedback will strengthen confidence
in the key predictors and ensure that the feature-based insights
remain valid in real-world supply chain planning.
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5. CONCLUSION

This study aimed to classify FMCG supply chain nodes using
Random Forest and XGBoost and to identify their key
predictive features. The analysis revealed that product sub-
categories (captured by SubGroup_Encoded) were the strongest
drivers of node class, and that textual tags (e.g. Has_AT,
Has_MA) and specific location codes (plant IDs) also significantly
predict node group. These predictors enable actionable insights,
for example, managers could organize warehouses or
distribution routes by sub-group and adjust resource allocation
for nodes marked by particular features. For instance, knowing
that nodes with a Has_AT flag belong predominantly to one
category could justify assigning extra staffing or prioritizing
transport for those nodes.

The novelty of this work lies in applying machine learning
feature importance analysis to FMCG node classification,
enabling transparent segmentation of the supply chain. The
resulting feature rankings offer an interpretable roadmap of
critical attributes (product sub-groups, code patterns, plant
locations) for optimizing inventory and distribution. Overall,
these feature-driven insights provide a data-backed basis for
optimizing FMCG network design and operations. Future work
should expand the node dataset and incorporate temporal
demand features or clustering to capture dynamics and reveal
latent groupings.
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